力扣128.最长连续序列
本文最后更新于 211 天前。

我们考虑枚举数组中的每个数 x,考虑以其为起点,不断尝试匹配 x+1,x+2,⋯ 是否存在,假设最长匹配到了 x+y,那么以 x 为起点的最长连续序列即为 x,x+1,x+2,⋯,x+y,其长度为 y+1,我们不断枚举并更新答案即可。

对于匹配的过程,暴力的方法是 O(n) 遍历数组去看是否存在这个数,但其实更高效的方法是用一个哈希表存储数组中的数,这样查看一个数是否存在即能优化至 O(1) 的时间复杂度。

仅仅是这样我们的算法时间复杂度最坏情况下还是会达到 O(n2)(即外层需要枚举 O(n) 个数,内层需要暴力匹配 O(n) 次),无法满足题目的要求。但仔细分析这个过程,我们会发现其中执行了很多不必要的枚举,如果已知有一个 x,x+1,x+2,⋯,x+y 的连续序列,而我们却重新从 x+1,x+2 或者是 x+y 处开始尝试匹配,那么得到的结果肯定不会优于枚举 x 为起点的答案,因此我们在外层循环的时候碰到这种情况跳过即可。

那么怎么判断是否跳过呢?由于我们要枚举的数 x 一定是在数组中不存在前驱数 x−1 的,不然按照上面的分析我们会从 x−1 开始尝试匹配,因此我们每次在哈希表中检查是否存在 x−1 即能判断是否需要跳过了。

增加了判断跳过的逻辑之后,时间复杂度是多少呢?外层循环需要 O(n) 的时间复杂度,只有当一个数是连续序列的第一个数的情况下才会进入内层循环,然后在内层循环中匹配连续序列中的数,因此数组中的每个数只会进入内层循环一次。根据上述分析可知,总时间复杂度为 O(n),符合题目要求。空间复杂度O(n)。哈希表存储数组中所有的数需要O(n)的空间。

class Solution {
public:
    int longestConsecutive(vector<int>& nums) {
        unordered_set<int> num_set;
        for(const int& num : nums ){
            num_set.insert(num);
        }
        int ans = 0;
        for(const int& num: num_set){
            if(!num_set.count(num - 1)){
                int cnt = 1;
                while(num_set.count(num + cnt)){
                    cnt++;
                }
                ans = max(ans, cnt);
            }
        }
        return ans;
    }
};
暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇